
The Accuracy of the Clock Synchronization

Achieved by TEMPO in Berkeley UNIX 4.3BSD

Riccardo Gusella and Stefano Zatti

Report No. UCB/CSD 87/337

January 1987
PROGRES Report No. 86.7

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
The Accuracy of the Clock Synchronization Achieved by TEMPO in
Berkeley UNIX 4.3BSD

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper discusses the upper and lower bounds on the accuracy of the time synchronization achieved by
the algorithms implemented in TEMPO, a distributed clock synchronizer running on Berkeley UNIX
4.3BSD systems. We show that the accuracy is a function of the network transmission latency, and depends
linearly upon the drift rate of the clocks and the interval between synchronizations. Comparison with other
clock synchronization algorithms reveals that TEMPO may achieve better synchronization accuracy at a
lower cost.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Accuracy of the Clock Synchronization
Achieved by TEMPO in Berkeley UNIX 4.3BSD

Riccardo Gusella and Stefano Zatt/

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This paper discusses the upper and lower bounds on the
accuracy of the time synchronization achieved by the algorithms
implemented in TEMPO, a distributed clock synchronizer running
on Berkeley UNIX 4.3BSD systems. We show that the accuracy is
a function of the the network transmission latency, and depends
linearly upon the drift rate of the clocks and the interval between
synchronizations. Comparison with other clock synchronization
algorithms reveals that TEMPO may achieve better synchroniza
tion accuracy at a lower cost.

Introduction

This paper discusses the upper and lower bounds on the accuracy of the
time synchronization achieved by the algorithms implemented in TEMPO, a
distributed clock synchronizer running on Berkeley UNIX 4.3BSD systems.

TEMPO, which works in a local area network, consists of a collection of
time daemons (one per machine) and is based on a master-slave structure2' 3 .

This work was sponsored by the Defense Advanced Research Projects Agency (DoD),
Arpa Order No. 4871 monitored by the Naval Electronics Systems Command under
contract No. N00039-84-C-0089, and by the CSELT Corporation. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the De
fense Research Projects Agency, of the US Government, or of CSELT.
UNIX is a Trademark of AT&T Bell Laboratories.

+ Author's current address: IBM Zurich Research Laboratory, Saumerstrasse 4,
CH-8803 Rueschlikon, Switzerland.

- 2 -

Figures 1a and 1b sketch the way TEMPO works. A master time dae

mon measures the time difference between the clock of the machine on

which it is running and those of all other machines. The master computes

the network time as the average of the times provided by nonfaulty clocks+.

It then sends to each slave time daemon the correction that should be per

formed on the clock of its machine. Since the correction can be negative, in

order to preserve the monotonicity of the clocks' time functions, TEMPO

implements it by slowing down (or speeding up) the clock rates1. This pro

cess is repeated periodically. Because the correction is expressed as a time

difference rather than an absolute time, transmission delays do not interfere

with synchronization.

When a machine comes up and joins the network, it starts a slave time

daemon, which will ask the master for the correct time and will reset the

machine's clock before any user activity can begin. TEMPO therefore main

tains a single network time in spite of the drift of clocks away from each

other.

An election algorithm that will elect a new master should the machine

running the current master crash, the master terminate (for example,

because of a run-time error), or the network be partitioned, ensures that

TEMPO provides continuous, and therefore reliable service4. However, in

the following discussion we will assume that elections do not occur, as we

are only concerned with determining the accuracy achieved by the clock

synchronization algorithms.

Definitions and General Assumptions

A physical clock generates an approximation, as precise as possible, of

t, the universal Galilean time. A real-valued, continuous, and everywhere

derivable function C(t) describes its behavior. Let p be the absolute value

of the maximum drift rate of an actual clock from the universal time; we

have:

1 _ < dC(t) < 1 +
p - dt - p.

(1)

Two clocks are said to be synchronized at time t 0 if their associated

functions have the same value, i.e. if C A (t0) = CB(t0).

t TEMPO considers faulty a clock whose value is more than a small specified in

terval away from those of the majority of the clocks belonging to the machines syn

chronized by the same master.

{]

(_}

-3-

The Measurements
·""'--

/ ;o

~
.._ __

/

Master
3:05

I
....

, '
i - -- ' _,..

I '
/ \ ' '/ -10 I 5 +20 " -),

G
Slave 1

2:55

(9
Slave 2

3:00

G
Slave 3

3:25

The Computation of the Average

--/

)0

G
... __

Master
3:05

~-----------·---
I

....) /

' / -- . . --
i I /i J

I \
/ \ ' / -10 ./-5 +20 •

C9
Slave 1

2:55

Av=

.:

(9
Slave 2

3:00

I

0- 10- 5= -5·.

3

Figure la

),

G
Slave 3

3:25

]

()

()

-4-

The Correction of the Clocks

/

/
1'/ +5

"'

C9
Slave 1

2:55

_,

,.-
/

j -5

G
!

i) -- I
I
\
\

.. o
"

(9
Slave 2

3:00

... __
"'

Master

.....

3:05

-
I
I
I
\

..... -25
),

G
Slave 3

3:25

_]

Clocks are now Synchronized

(9
Slave 1

3:00

(9

(9
Slave 2

3:00

Figure lb

Master
3:00

(9
Slave 3

3:00

)

- 5 -

Let R be a constant. Two or more clocks are within rangeR at time t 0

if the difference between any two of them is bounded by R:

lcA(t0)- C8 (t 0) I :5 R.

Lemma 1:
Fort 1 ~t0 :

Proof:
Immediate by integrating (1).

Lemma 2:
The absolute value of the relative drift rate of any two clocks satisfying (1),

is at most 2p:

Proof:

d(C A (t) - CB(t))

dt
:5 2p .

Let us first assume that clock CA is fast and clock C8 is slow. From (1) we

have:

1 + p' 1- p.

In this case,

In the opposite case, in which clock C A is slow and clock C8 is fast, (1)

yields:

-2p.

Lemma 2 follows.

A direct consequence of Lemma 2 is that, if two clocks are synchronized

at time t 0, at any later time t 1 their values can differ at most by

± 2p(t1 - t 0).

The Clock Difference Measurement Algorithm

Machine A timestamps a message at time CA(t 1) and sends it to

Machine B, which timestamps it at time C8 (t 2) and sends it back t. Upon

+ This exchange of messages is implemented in TEMPO using the TimeStamp
and TimeStampReply messages of the DARPA Internet Control Message Protocol

- 6 -

receipt of the message, Machine A reads the time C A (t3). Machine A can
estimate ~AB(t), the difference between its own clock and the clock of
Machine B, as

CA(tl) + CA(t3)
2 - CB(t2) .

As indicated, ~AB is a function of time, but we assume that its variation in
the interval t 3 - t 1 is so small that we can write:

~AB(t3) = ~AB(tl) =~AB
Also, notice that ~AB = - ~BA

Theorem 1:
Let Tm and Tm be the minimal possible transmission times from A to B AB 8.4

and from B to A, respectively+. Let us fix a bound, TM ~ 2max(T m.
48

, T m
8

.
4

),

on the round-trip time, i.e. C A (t 3) - C A (t 1) :5 TM. Then, the maximum
error in the estimation of ~AB is:

E = ----------------------
2

(2)

Proof:
Let Ts.w and Ts

8
A be the actual transmission times from A to B and vice

versa. We have:

and also:

max(T8)
AB TM - T mAB

for the hypotheses.

We can now computet:

(ICMP)10. As soon as the associated interrupt of the network interface is served,
the kernel of a remote machine processes a TimeStamp message by changing its
type field to TimeStampReply, writing the clock value in the message, and sending
it back without invoking a user process. This implement a variant of an echo proto
col. We can therefore consider that the remote time query occurs instantaneously at
the remote machine at time t 2.

+ In general Tm and Tm will be different, as in the case of a ring network AB BA
where the information flow travels in the same direction. However, these two times
can also be different in a bus network because, for example, of different interrupt
structures of the two machines.

+ In the actual implementation, several round-trip messages are exchanged and
the minimum values of 81 and 82 are used in the computation of EAB· This
reduces the variance of the transmission times in the two directions and provides a
better estimate of ~AB·

(3)

- 7 -

.S1 = CB(t2)- CA(tl) = -ll.AB + TsAB'

.S2 = C A (t3) - CB(t2) = ll.AB + TsBA '

and, if EAB is our estimate of ll.A8 :

TsBA - Ts
ll.AB + AB (4)

2

From (3) we can derive:

- (TM - 2T mB) ~ TsBA - TsAB ~ (TM - 2T m_,) . (5)

By substituting (5) into (4), we get:

TM - 2T mBA TM -- 2T mAB
ll.AB - 2 < EAB ~ ll.AB + 2 (6)

If we define:

E = -------------------
2

since

TM- 2Tm AB d E 2: ----
2
--- an E 2:

for the definition of TM, then the theorem follows:

I E AB - fl. AB I ::::::; E . (7)

If the estimate E AB is used to synchronize the clock of Machine B, the

two machines' clocks are, upon synchronization, within range E.

Corollary 1:
The lower bound for the error E is:

E 2: I T mAB - T mBA I·
Proof:
Immediate by substituting into (2) the expression for TM.

Corollary 2:
The measurement algorithm allows a machine to compute the clock

difference between any two other machines with maximum error 2£.

Proof:
Let us suppose that machine A sends clock difference measurement mes

sages to any two machines, for instance machines Band C, then:

ll.AB = CA(t) - CB(t)' EAB = ll.AB ± E'

It follows:

- 8 -

.!\Ac = CA(t) - Cc(t), EAc = .!\Ac ± E'

.!\nc = .!\Ac - .!\An , Enc = EAc - EAB ·

The Synchronization Algorithm

The master, using the clock difference measurement algorithm, com
putes the time differences between its clock and the clocks of slave
machines. A fault-tolerant averaging function is then applied to these
differences. It selects the largest sets of clocks that do not differ from each
other more than a small quantity y and averages the differences of these
clocks. For instance, in the example of Figures 1a and 1b, assuming that y
is 10 minutes, the fault-tolerant function selects the set consisting of the
clock of the Master, the clock of Slave 1, and that of Slave 2. This averag
ing function prevents malfunctioning clocks as well as clocks with abnor
mally large drift rates from adversely affecting other clocks. Notice, how
ever, that the synchronization algorithm produces the appropriate correction
value for every clock. Clocks that are not selected by the fault-tolerant
function are considered faulty. Last, the master asks each slave to correct
its clock by a quantity equal to the difference between the average value
and the previously measured difference between the clock of the master and
that of the slave. This process is repeated every T seconds.

For TEMPO to be reliable, it is necessary that all properly functioning
clocks be within y seconds when the master starts a synchronization round.
The constant y is therefore chosen as a function of the clock drift rate; the
interval between synchronization rounds, T; and the measurement errors as
derived in Theorem 3 below.

Theorem 2:
If the master, using the synchronization algorithm described above syn
chronizes a number of machines, then any two non-faulty clocks are, once
the synchronization is performed, within range 4E.
Proof:
Let Q be the set of machines selected by the fault-tolerant averaging func
tion. The average of the measurements is then:

1 ~ - _1_ ~ .!\ + [IQI - 11 IQI J~EAJ- IQI J~ AJ- IQI E' (
8)

where we have assumed that the clock of the master A is also non-faulty*
and .!\AA = 0 with no error by definition.

+ This is not a necessary assumption. The algorithm and the derivations will con-

- 9 -

If we use the symbol K for ~~I L t,.AJ in order to simplify the notation,
JEQ

we can rewrite (8) as:

with E
1 = E.

The correction performed on the clock of machine K is:

1
CK = TQT J~EAJ - EAK,

(9)

from which, by adding the quantity t,.AK - t,., and for (7) and (9) we obtain:

I CK + t,.AK - K I ~ I~ I J~EAJ - K + I t,.AK - EAK I ~ E' + E.

Let us represent with t,.'Bc the difference between the clocks of
machines B and C after the correction is made:

By adding and subtracting t,. we can write:

t,.'Bc = (t,.AC + Cc -t,.) - (t,.AB + CB -t,.) •

and also:

I t,.'Bc I ~ Icc + t,.Ac - K I + I K - cB - t,.AB I ~ 2E' + 2E = 4E

which completes the proof.

The following theorem summarizes the previous results:

Theorem 3:
If a machine measures the t,.'s for a set of other machines and synchronizes
them every T seconds, then, at any time, all non-faulty clocks are within
range 4E + 2pT. ,
Proof:
The first item, 4E, as per Theorem 2, accounts for the inaccuracy of syn
chronization after the clocks have been reset. The second, as per Lemma 2,
accounts for the maximum drift of any two clocks during the time between
two subsequent synchronizations.

tinue to be valid whether or not the master's clock is selected by the fault-tolerant
averaging function. Refer, however, to the next section of this paper for a brief dis
cussion of the types of faults that TEMPO can tolerate.

- 10 -

Discussion

It is important to notice that in the derivation of the bounds on the
time accuracy we have made no assumption whatsoever about the statistical
distribution of the transmission times between two machines, nor have we
assumed that these distributions are the same in the two communication
directions.

It should also be noted that the requirements on the maximum round
trip time TM can be verified by the master, in the notation used above, by
computing CA(t3) - CA(t 1). Even though messages can be arbitrarily
delayed, the master is always able to reject measurements that do not
satisfy the conditions of Theorem 1.

In our implementation of TEMPO for the Ethernet local area network,
we have chosen a value of 20 milliseconds for TM. Although the Digital
Equipment VAX Hardware Handbook states that p can be as high as 10-4,

we have verified, using a high-resolution frequency meter, that the clocks of
the V AX's used in our experiments display drift rates smaller than 2 parts
in 105. Since the minimum transmission delay from machine to machine
can be estimated to be 5 milliseconds (including kernel protocol handling
and the scheduling delays of the master process), and since TEMPO syn
chronizes the clocks every 4 minutes, the maximum error in Theorem 3 is
30 milliseconds.

Let us call £ AB the actual error in the measurement of the clock
difference between machines A and B. From (6) we have: -£ ~ fAB ~ + £.

Therefore, the actual quantity that corresponds to £
1 in (9) is, for (8),

1 TQT J~ fAJ that is the average of the actual errors of the measurements

between the master A and the other machines in the set Q. As such, by the
Strong Law of Large Numbers, this quantity converges in probability to the
mean of the random variable that models the measurement errors. Under
the condition of identically distributed transmission times in the two com
munication directions, which is satisfied in the case of the Ethernet t, this
mean, as can be recognized in (6), is zero. While according to Theorem 3 the
first component of the global error can be as large as 4£, the algebraic mani
pulations in the proof of Theorem 2 show that it can be separated into two
parts, one of which, 2£', for what we have just seen, should be very small.

In measurements taken in our environment, where the time daemons
synchronized the clocks of about 15 machines, we rarely found the time

+ See also footnote to Theorem 1.

- 11 -

difference between clocks to be larger than 25 milliseconds, with the mean
between 18 and 20 milliseconds. Since the drift rate of the clocks makes
them diverge at most 10 milliseconds in 4 minutes, we estimated that the
synchronization inaccuracies due to the error described in Theorem 2
amount to about 10 milliseconds on the average.

As previously observed, a clock is considered faulty if it is not selected
by the fault-tolerant averaging function. Therefore, great attention must be
paid to the appropriate choice for the value of y. If y is too small, only a
few clocks may be selected; if it is too large, malfunctioning clocks can
reduce the precision of the synchronized time. In both cases, the reliability
of TEMPO decreases. Since our measurements showed that most clocks do
not diverge more than 20 milliseconds from each other, we set y equal to 20
milliseconds.

The fault-tolerant averaging function may reject a clock measurement
for any of three reasons. First, there may be a hardware malfunction.
Second, a clock difference measurement may follow a clock adjustment with
an above-average error. Finally, in an improperly set-up machine, a series
of high-priority interrupts may prevent the operating system from servicing
lower-priority timer clock interrupts, causing that machine's clock to slow
down. Given that TEMPO was designed for an environment where Byzan
tine faults are highly improbable, the synchronization algorithm can

N-1 tolerate
2

faults. However, it should be noted that the clock of the

master, which is not considered more important than any other clock by the
fault-tolerant averaging function, may cause the clock difference measure
ment algorithm to fail if it is double-faced.

Comparison with Previous Work

Although Tempo is a distributed program, it uses a centralized
approach in directing the synchronization activities. Fault-tolerance is
achieved by not giving a privileged role to the master's clock in the syn
chronization algorithm and by providing an election algorithm that elects a
new master should the old one terminate. Our approach therefore contrasts
with other existing algorithms that adopt a fully distributed approach to
fault-tolerance.

It is difficult to compare the various clock synchronization algorithms
because, as observed by Lamport and Melliar-Smith 7, different algorithms
require different methods of reading clocks and each method generates a
different error. In addition, the various authors describe the bounds on
their algorithms using parameters not always easily convertible to those of

- 12 -

our system of variables. However, in general, the errors in clock synchroni
zation, as in Theorem 3, depend on the uncertainty in the elapsed time
between the generation and the receipt of a message and on the time
between synchronization rounds.

In the remainder of this section, in order to compare the bounds on the
accuracy of different algorithms, we make the following three additional
assumptions: 1) there are N = 3F + 1 machines, where F is the number of
machines with faulty clocks; 2) the transmission time between any two
machines is equally distributed; and 3) the message delivery time is in the
range [T- 71, T + 71], where T is the median delay time and 11 is the uncer
tainty. Also, notice that our purpose is to point out the main advantages of
our algorithm over some alternative clock synchronization methods rather
than to comprehensively review the literature in this area.

Lundelius and Lynch9 describe an algorithm that executes in a series of
rounds; each round is started when a clock reaches a certain predefined
value. When this happens, a machine broadcasts that value to all other
machines. Meanwhile, it collects within a particular bounded amount of
time measured on its own clock, messages from other machines. Then, each
machine computes the correction for its clock using a fault-tolerant averag
ing function. The bound analysis shows that clocks can be synchronized as
closely as 471+4pT, but the authors suggest that, with a slight modification
of their algorithm, they can reduce the second term to 2pT.

The algorithm designed by Halpern et al. 5 is also based on the periodic
broadcasting of clock values. In their method however, a machine that
receives a message with a value that its clock has not reached yet, updates
the clock to that value and broadcast the corresponding message. This algo
rithm generates an error of T + 11 + 2p T.

The three algorithms introduced by Lamport and Melliar-Smith6, CON,
COM, and CSM, are based on broadcast as well and achieve the following

accuracy respectively: 2N71 + N pT, 2(N + 1)71 + pT, and N ~ 17
71 +pT.

Although Lamport and Melliar-Smith do not give the synchronization
error in a form comparable to ours -they analyze how closely in real time
clocks reach the same value whereas we measure how close clocks are at the
same real time-, the two quantities appear to be similar.

While it is true that most communication protocols are designed to pro
vide an upper bound on the communication time, perhaps by abnormally
terminating the transmission after a number of retries, it is also true that
the resulting variance in the transmission times can be much larger than
the average transmission time. A unique feature of our algorithm is that it

- 13 -

can bound the round-trip time, despite the high variance in transmission
times, by rejecting those measurements that do not satisfy the requirements
of Theorem 1. In fact, under the assumptions introduced above, if we call
T m the minimum transmission time, we have:

and

'T = 11 =
TM- 2Tm

2

By comparing the expression for 11 with (2), we can rewrite the result of
Theorem 3 as:

411 + 2pT.

Although the formula for the accuracy of our algorithm is the same as
the one for the algorithm of Lundelius, our 11 is much lower than theirs.
Using for the parameters the values we have introduced earlier in this sec
tion, we obtain 'T = 10 milliseconds and 11 = 5 milliseconds. In the case of
other algorithms, 11 is proportional to the standard deviation of the
transmission times, which for the Ethernet can be rather large when mes
sages collide. When clocks are synchronized -or almost synchronized- the
simultaneous broadcasting of messages that occurs in the algorithms, may
cause numerous collisions, increasing both the median transmission time 'T

and the uncertainty 11· Therefore in an Ethernet environment, we would
expect that our algorithm achieve significantly better synchronization accu
racy. In a non-Ethernet environment, for instance a ring or point-to-point
network, we would still expect that 11 of the other algorithms would be
larger than our 17, though the difference between the two may be smaller.

Algorithms COM and CSM were developed in the framework of Byzan
tine clock synchronization and both require about NF + 1 messages. Algo
rithm CON and the algorithms of Lundelius and Halpern require in the
worst case about N 2 messages. TEMPO, in contrast with the other algo
rithms, employs for each synchronization round only a linear number of
messages. However, unlike TEMPO which needs an election mechanism to
ensure that a new master be elected in case the current one crashes or the
network partitions, those algorithms are inherently fault-tolerant. Our
choice is motivated by the fact that in our computing environment the kind
of faults that require the intervention of the election procedure are rare. We
have followed a design principle8 that calls for simplicity in the most com
mon situations and confines complexity and high costs with unusual condi
tions.

- 14-

Conclusions

We have discussed the upper and lower bounds on the accuracy
achieved by the clock synchronization algorithms of TEMPO which is distri
buted with Berkeley UNIX 4.3BSD. TEMPO keeps the clocks of VAX com
puters in a local area network synchronized with an accuracy comparable to
the resolution of single machine clocks. Comparison with other clock syn
chronization algorithms shows that TEMPO, in an environment with no
Byzantine faults, may achieve better synchronization at a lower cost.

Acknowledgments

The authors would like to thank Domenico Ferrari and Mike Karels for
their valuable advice during the development and implementation of these
algorithms.

References

[1]. ''Adjtime System Call," UNIX Programmer's Manual (Section 2), 4th
Berkeley UNIX Distribution Release 3, February 1985.

[2]. R. Gusella and S. Zatti, "TEMPO - A Network Time Controller for a
Distributed Berkeley UNIX System," Distributed Processing Tech.
Comm. Newsletter, vol. 6 NoSI-2, pp. 7-15, IEEE, June 1984.

[3]. R. Gusella and S. Zatti, "The Berkeley UNIX 4.3BSD Time Synchroni
zation Protocol: Protocol Specification," Report No. UCB!CSD 851250,
University of California, Berkeley, June 1985.

[4]. R. Gusella and S. Zatti, "An Election Algorithm for a Distributed Clock
Synchronization Program," IEEE 6th International Conference on Distri
buted Computing Systems, pp. 364-371, Boston, May 1986.

[5]. J. Halpern et al., "Fault-Tolerant Clock Synchronization," Proceedings
of the 3th ACM Annual Symposium on Principles of Distributed Com
puting, pp. 89-102, Vancouver, August 1984.

[6]. L. Lamport and P.M. Melliar-Smith, "Byzantine Clock Synchroniza
tion," Proceedings of the 3th ACM Annual Symposium on Principles of
Distributed Computing, pp. 68-74, Vancouver, August 1984.

[7]. L. Lamport and P.M. Melliar-Smith, "Synchronizing Clock in the Pres
ence of Faults," Journal of the ACM, vol. 32, pp. 52-78, January 1985.

[8]. B. Lampson, "Hints for Computer System Design," Proceedings of the
9th SOSP, Operating System Review, vol. 17, pp. 33-48, ACM, October
1983.

- 15 -

[9]. J. Lundelius and N. Lynch, ''A New Fault-Tolerant Algorithm for Clock
Synchronization," Proceedings of the 3th ACM Annual Symposium on
Principles of Distributed Computing, pp. 75-88, Vancouver, August
1984.

[IO].J. Postel (ed.), "Internet Control Message Protocol - DARPA Internet
Program Protocol Specification," RFC 792, USC/Information Science
Institute, September 1981.

